The behavior of both botnets and worms in peer-to-peer networks have been empirically examined and models or simulations of their behavior have been attempted, and the manner in which different nodes in peer-to-peer networks develop in and of themselves and in terms of their relationships with other nodes -- the very architecture of the network itself, in other words, which is necessarily dynamic in a peer-to-peer network -- makes it easier for these threats to spread and evolve undetected due to this architecture and to the patterns of information flow over such networks (Fan, 2011; Xu et al., 2011). When it comes to worms propagating in peer-to-eer networks, the activity of the worm itself has been demonstrated to be the most necessary knowledge in terms of tracking and preventing the continued spread and damage of such a threat, while botnets generally show more "robustness" an are better impacted by shifts...
[ View Full Essay]